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We present an efficient algorithm for finding the first excited state of the random-
field Ising model based on the equivalence of its Hamiltonian with the capacity of
cuts of a certain network. Some preliminary results in the two-dimensional case with
a Gaussian distribution of random fields are presentegl2001 Academic Press
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1. INTRODUCTION

Many physical properties of real systems are determined by the amount of diso
(vacancies, impurities, dislocations, etc.) present. Among others, some important exan
can be found in magnetism, superconductivity, and structural phase transitions. For n
years the study of such disordered systems has been a challenging problem and has att
large attention. One of the simplest models proposed to describe such systems is the rar
field Ising model (RFIM). It is defined on a finite regular lattice withsites indexed from
i =1...N. At each lattice site one defines a spin variable taking vatties +1. The
Hamiltonian reads

N
H=—JZSSj—GZhiS, (1)
(i,}) i=1

where the first sum extends over nearest-neighbor phissQ is a ferromagnetic exchange
coupling (we will takeJ = 1 as a unit of energy)y; are Gaussian random fields with
zero mean and standard deviation 1, arig0) is a parameter that controls the amount o
disorder present in the system.

The statistical properties of systems presenting a free energy with many minima are
difficult to calculate. The difficulty is greater when these properties must be studied at

219

0021-9991/01 $35.00
Copyright(© 2001 by Academic Press
All rights of reproduction in any form reserved.



220 FRONTERA AND VIVES

low temperatures. The conventional Monte Carlo method suffers from the problem that
system becomes trapped in a metastable state and cannot escape in a reasonable con
time. A first approach to overcome this difficulty and to understand the role of disordel
this model has been the study of its behavioF at 0. The aim of this approximation is to
decouple the thermal fluctuations from disorder. The study of the exact ground state o
RFIM has been possible due to the existence of a well-established equivalence betwee
problem of finding the ground state of the Hamiltonian (1) and the problem of finding t
cut with minimum capacity of a network [1-3]. Using this mapping, many numerical effor
have been devoted to the understanding of how the ground state properties change wh
amount of disordes is changed for the 2d [4, 5] and 3d [6] Gaussian RFIM. In this pape
we propose an algorithm that allows us to go one step forward and study the propertie
the first excited state (FES) of the Hamiltonian (1). The idea behind this is to gain insi
into the understanding of the properties of the system at low temperatures. It shoulc
mentioned that recently a similar study of low-energy excitations has been applied to
study of two similar models (the random bond Ising model and the diluted antiferromag
in a field model) [7].

The paper is organized as follows; in Section 2 we revisit the equivalence to the mininr
cut problem; in Section 3 the mathematical basis of the algorithm for finding the FES
presented; and in Section 4 some preliminary results, corresponding to a two-dimensi
square lattice with periodic boundary conditions, are presented.

2. EQUIVALENCE WITH CUT CAPACITIES IN A NETWORK

In this section we revisit the equivalence between finding the ground state of
Hamiltonian (1) and finding the cut with minimum capacity in a network. This equiv:
lence was established 25 years ago by Picard and Radcliff [1]. A brief explanation is gi
below to provide the notation.

One considers a netwoyk based on a di-grap6 = [V, E] [9]. The set of vertice/
hasN + 2 elements associated with thesites of the square lattice plus a souncand a
sinkv. These vertices are indexed from ONo+ 1. The vertex with index O corresponds to
the sourcaey, vertices with index 1 tdN correspond to the sités= 1, ..., N of the lattice,
and the vertex with indeX + 1 corresponds to the sink The set of directed edgds
has N elements. Each edge corresponds to an ordered pair of veitigesad has an
associated capacityi, j) > 0. The edges and capacities are defined as follows:

e For each paiti, j) of nearest-neighbor sites of the lattice, a directed edge departi
from the vertex with lowest index and reaching the vertex with highest index is définec
The capacity of that edge is takentodie j) =4 ( < j).

e For each lattice site with h; > 0 an edge departing from the sourcand reaching
the corresponding vertex is defined. Its capacity is taken ti®e) = 20 h;.

e For each lattice sité with h; < 0 an edge departing from the corresponding verte
and reaching the sinkis defined. Its capacity is taken to bé, N + 1) = —2c'h;.

A cut X is any subset oV such that 0= X and (N + 1) ¢ X. Thus, a cut defines a
partition of V. = X U X. The capacity of a cut is the sum of the capacities of the edg
leaving X and reachingX. We introduce, for each vertex, a variabdethat equals 1 if

LIn fact, the direction of the edge can be arbitrarily defined.
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i € X and 0 otherwise. With this definitia, = 1 andxy1 = 0 for any cut. Any cuiX is
equivalent to a configuration of these variablgg. The capacity of a cuX can be written
as

i
COO =Y cl, HxL—x)

edges
N
= {c0.)@—x) +cl. N+ Dx}+ > cli. Hx(L—x)). )
i=1 (i.j)
Each cut can be related to a configuration of spi$through the correspondence

1+
S:in—1¢>xi=78', 3)
andso§ = +1ifi € Xand§ = —11ifi ¢ X. With these definitions the capacity of a cut

can be related to the energy of the configurafi§n via

N
C(X) Z{c(o,i)l_zS +ci, N+1)}+4Z 1+51- sJ

i=1

Saon T Sy 2h1+S+Zl+Z(S SJ)—ZSJ

hi>0 h; <0 (i)

=—(_§%S,-S—o§;his+gw+a§;|hi|, 4)
ij i= i=

wherez is the lattice coordination number. Note tla¢X) differs from the Hamiltonian
(1) by a constant valugN + oZiN:l |h;|) which is independent of the configurati¢g}.
Thus, the capacity of each dit } is related to the energy of the corresponding configuratic
{S}. This reduces the problem of finding the configuration with minimimum engfdy
finding the cut of minimum capacit{™" of the corresponding network. There are sever:
efficient algorithms that solve the problem of finding the maximum flow and the minimt
cut of a network [10]. Hereafter, we will suppose that any of these algorithms may be u:
Our interest here is to find the first excited state. Thus, we should find the cut with capa
nearest the minimurX"™. The algorithm presented in the next section is deterministic au
can be applied to any lattice of any spatial dimension, provided that no frustration appe
It can also be extended to models with longer range interactions. The algorithm is rel;
to the so-called sensitivity analysis technique in the context of linear programming [8].

3. FINDING THE CUT WITH CAPACITY NEAREST THE MINIMUM

Let us consider a general netwaiK based on a di-graps = [V, E] and capacity
functionc. Without losing generality we will assume that all the edgeg bfve a capacity
larger than zero. We will denote the cut with minimum capacity (or min-cut) @fs X™".
There is an implicit association between any Xutf A" and the set of edges leavibgand
reachingX. This set of edges is denoted & (X). For any element of (X, X), it is said
thatw is an edge of the cuX and that the cuX containsw.



222 FRONTERA AND VIVES

Letus consider the set of all possible cuts of the netaéris” . Any edgew of E divides
SV _into two subsets: the set of cuts contain'mgs,ﬁf ) and the set of cuts not containing
w(SN).

Letw be an edge oK™" (min-cut of /). We define the network/2 based on the same
di-graph G, with capacity functioncl. by augmenting the capacity of the edgeby an
amounts (>0) and keeping all the other capacities equal to thos® ofhat is,
cA(w) =c(w) + 8

y _ (5)
¢ (w) = c(w) V(E 2)w # w.
Now, we will focus on the problem of finding the min-cut®f that depends on the value
8. Let us consider a general citof the network\". Obviously, X is also a well-defined
cut of 2 and its capacity in this network satisfies

s if w¢ (X, X)

CL(X) —C(X) = _ = = (6)
§=ci(w) —c(w) if we (X, X).

This means that when the capacity of the edge increased the capacity of all the cuts
containingw augments by the same amount while all the other cuts maintain their capac
In other words, all the cuts of s& have the same capacity M2 as in\/, while all the
cuts of seTSwf—v have a larger capacity iV than in /. Moreover, all the cuts of sﬂ{;‘/
increase their capacity by the same amodhtThis implies that whatever the valuedis,
XM is the cut of seS4” with minimum capacity (both in V2 and in\). Let XZ™" be the
cut of setSY with minimum capacity in\V. Since the capacity of the cuts of this set doe:
not change witts, X™" is also the cut with minimum capacity of s&} in A2, whatever
the value of. Thus, for any value of, the two candidates to be the min-cut\df are X™n
and X" if § is large enoughC2 (X™M will be lower thanC2 (X™"). Hence

) Xmin-if § < C(XIN) — (XM
min-cut of V2 = o . : (7
Xmn o if § > C(XPM) — C(XMn).

Obviously, the cut with capacity nearest the minimuwd"{) must differ from the cut
with minimum capacity by, at least, one edge. Thus, there exists (at least) one edge
XM 50 thatX"™ is in S%'. Moreover,X"™ must coincide withX™". This allows us, with
the help of any max-flow min-cut algorithm appliedt& for each edgev of the network,
to reduce the number of candidates toXt¥" to an affordable number. To find"™ it is
sufficient to minimizeC (X™" over all edgesy of X™":

w

CX" = min__ C(XT" (8)
we(Xmin xmin
X" = X7 so thatvw € (X™", X™")  C(X]™) < C(XI") ©)
In fact, the equal sign in Eq. (9) only holds fer= w. A formal algorithm to find the
cut with capacity nearest the minimum can be written as
2\We have fixedv e (X", X™") soX™n ¢ SV,

2]
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ALGORITHM 1 (CUT WITH CAPACITY NEAREST THEMINIMUM OF N\).

1. begin

2. C™M:=C(XMmn 1§

3. for w e (Xmin xmin)

4. Xy 1= min-cut(\N?)
5. if C&(Xg) < C"Mthen
6 C"M:= C3(Xyp)

7 XM= Xz

8 end if

9. endfor

10. return X"M

11. end,

wheremin-cut is a function that, acting over a network, returns its min-cut. The algorith
starts by initializingC"™ to a large enough value. This can be achieved by choosing a la
enoughy to satisfy Eq. (7). Then, for eackl? (whenw sweeps all the edges o™in), the
corresponding min-cut{;) is found and its capacity in2 compared withC"™. Conve-
niently, C"™ is updated taC (Xz) and X" is temporarily identified withX ;. At the end
of the algorithmX™ is the cut with capacity nearest the minimum &1t its capacity.

4. PRELIMINARY RESULTS

To illustrate the kind of results that can be obtained and the efficiency of the algorit
presented above, we have studied the FES of the 2d RFIM (1) on a square lattice
periodic boundary conditiondy = 32 x 32, and values o& ranging from 0.25 to 2.0.
For each value of we have analyzed f@lifferent realizations of the random fielfts }. For
each realization we have constructed a network following the mapping of Section 2.
each network we found its min-cut and its cut with capacity nearest the minimum. Follow
Eq. (3), we found the ground statg’} and the FESS'}.

To analyze the results we define the energy difference as

AH =H(S) - H(S) (10)

and the overlap between the ground state and the FES as

N
q=>_ S (11)
i=1

Figure 1 shows the distribution &7 for different values otr. Each histogram is an
approximation to the probability densip(A7) obtained by performing statistics over10
different realizations of the random fields. As can be seen, for a certain vatue-cf.0
an energy gap between the ground state and the FES appears for most of the realizati
the random fields.

To investigate further the nature of these FES in Fig. 2 we show the diagrah g.
Each circle on these plots corresponds to the @gin7) found for one seth;}. For low
values of disorder there is a small fraction of FES with values of the overlap corresponc
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FIG.1. Probability densityp(AH) of the excess energy corresponding to the FES of the 2d RFIM for differer
values ofo. Results correspond to 4 @ealizations of alN = 32 x 32 system.
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FIG.2. g-A™ diagramsofa2d RFIM witthN = 32 x 32. For each value ef, 10* realizations of the disorder
have been considered.
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FIG. 3. Ratio between the average tinf&® needed to find the FES and the average tifitsmeeded to find
the ground state, for different values®f Data correspond to the study of a 2d RFIM with skte= 32 x 32.

to the flip of all the spins in the systerq & —1), while the rest of the FES corresponds
to the flip of a single sping = 1 — 2/N). This change of behavior found arouad~ 1.0
could be related to the disorder-induced phase transition discussed in Ref. [5]. Neverthe
a clear answer can only be obtained after a finite-size scaling analysis of the results, w
will be presented elsewhere.

Finally, to illustrate the speed of the proposed algorithm Fig. 3 shows the ratio betw
the average timé&™&S needed to find the FES and the average tifffeneeded to find the
ground state, for different values of Note that the time needed for finding the FES i:
much smaller than the time one would need by using the trivial method of forcing |
reversal of each individual spin of the system and finding the corresponding ground st:
Such an algorithm would represent a rafi6S/t®S ~ N. It is known [11] that the time for
finding the max-flow of\V2 once the max-flow i\ is determined behavesbfx N. Thus,
tFES/tGS ~ O(l)

5. SUMMARY AND CONCLUSIONS

A deterministic and efficient algorithm for finding the first excited state of the randol
field Ising model has been presented. The algorithm is based on the analysis of the gr
state, which is found by means of any polynomial time minimization algorithm. The rec
sive study of the edges of the minimum cut makes it possible to find the cut with capa
nearest the minimum as has been proved in Section 3. If the min-cut algorithm used fo
determination of the ground state has a polynomial efficigneyN®(« > z), the present
algorithm efficiency will also grow as~ N¢. Moreover, it can be recursively used to find
the sequence of the first, second, third, etc., excited states.
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