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We present an efficient algorithm for finding the first excited state of the random-
field Ising model based on the equivalence of its Hamiltonian with the capacity of
cuts of a certain network. Some preliminary results in the two-dimensional case with
a Gaussian distribution of random fields are presented.c© 2001 Academic Press
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1. INTRODUCTION

Many physical properties of real systems are determined by the amount of disorder
(vacancies, impurities, dislocations, etc.) present. Among others, some important examples
can be found in magnetism, superconductivity, and structural phase transitions. For many
years the study of such disordered systems has been a challenging problem and has attracted
large attention. One of the simplest models proposed to describe such systems is the random-
field Ising model (RFIM). It is defined on a finite regular lattice withN sites indexed from
i = 1 . . . N. At each lattice site one defines a spin variable taking valuesSi = ±1. The
Hamiltonian reads

H = −J
∑
〈i, j 〉

Si Sj − σ
N∑

i=1

hi Si , (1)

where the first sum extends over nearest-neighbor pairs,J > 0 is a ferromagnetic exchange
coupling (we will takeJ = 1 as a unit of energy),hi are Gaussian random fields with
zero mean and standard deviation 1, andσ(≥0) is a parameter that controls the amount of
disorder present in the system.

The statistical properties of systems presenting a free energy with many minima are very
difficult to calculate. The difficulty is greater when these properties must be studied at very
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low temperatures. The conventional Monte Carlo method suffers from the problem that the
system becomes trapped in a metastable state and cannot escape in a reasonable computing
time. A first approach to overcome this difficulty and to understand the role of disorder in
this model has been the study of its behavior atT = 0. The aim of this approximation is to
decouple the thermal fluctuations from disorder. The study of the exact ground state of the
RFIM has been possible due to the existence of a well-established equivalence between the
problem of finding the ground state of the Hamiltonian (1) and the problem of finding the
cut with minimum capacity of a network [1–3]. Using this mapping, many numerical efforts
have been devoted to the understanding of how the ground state properties change when the
amount of disorderσ is changed for the 2d [4, 5] and 3d [6] Gaussian RFIM. In this paper
we propose an algorithm that allows us to go one step forward and study the properties of
the first excited state (FES) of the Hamiltonian (1). The idea behind this is to gain insight
into the understanding of the properties of the system at low temperatures. It should be
mentioned that recently a similar study of low-energy excitations has been applied to the
study of two similar models (the random bond Ising model and the diluted antiferromagnet
in a field model) [7].

The paper is organized as follows; in Section 2 we revisit the equivalence to the minimum
cut problem; in Section 3 the mathematical basis of the algorithm for finding the FES is
presented; and in Section 4 some preliminary results, corresponding to a two-dimensional
square lattice with periodic boundary conditions, are presented.

2. EQUIVALENCE WITH CUT CAPACITIES IN A NETWORK

In this section we revisit the equivalence between finding the ground state of the
Hamiltonian (1) and finding the cut with minimum capacity in a network. This equiva-
lence was established 25 years ago by Picard and Radcliff [1]. A brief explanation is given
below to provide the notation.

One considers a networkN based on a di-graphG = [V, E] [9]. The set of verticesV
hasN + 2 elements associated with theN sites of the square lattice plus a sourceu and a
sinkv. These vertices are indexed from 0 toN + 1. The vertex with index 0 corresponds to
the sourceu, vertices with index 1 toN correspond to the sitesi = 1, . . . , N of the lattice,
and the vertex with indexN + 1 corresponds to the sinkv. The set of directed edgesE
has 3N elements. Each edge corresponds to an ordered pair of vertices (i, j ) and has an
associated capacityc(i, j ) > 0. The edges and capacities are defined as follows:

• For each pair〈i, j 〉 of nearest-neighbor sites of the lattice, a directed edge departing
from the vertex with lowest index and reaching the vertex with highest index is defined.1

The capacity of that edge is taken to bec(i, j ) = 4 (i < j ).
• For each lattice sitei with hi > 0 an edge departing from the sourceu and reaching

the corresponding vertex is defined. Its capacity is taken to bec(0, i ) = 2σhi .
• For each lattice sitei with hi < 0 an edge departing from the corresponding vertex

and reaching the sinkv is defined. Its capacity is taken to bec(i, N + 1) = −2σhi .

A cut X is any subset ofV such that 0∈ X and (N + 1) /∈ X. Thus, a cut defines a
partition of V = X ∪ X̄. The capacity of a cut is the sum of the capacities of the edges
leaving X and reachingX̄. We introduce, for each vertex, a variablexi that equals 1 if

1 In fact, the direction of the edge can be arbitrarily defined.
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i ∈ X and 0 otherwise. With this definitionxo = 1 andxN+1 = 0 for any cut. Any cutX is
equivalent to a configuration of these variables{xi }. The capacity of a cutX can be written
as

C(X) =
i, j∑

edges

c(i, j )xi (1− xj )

=
N∑

i=1

{c(0, i )(1− xi )+ c(i, N + 1)xi } +
∑
〈i, j 〉

c(i, j )xi (1− xj ). (2)

Each cut can be related to a configuration of spins{Si } through the correspondence

Si = 2xi − 1⇔ xi = 1+ Si

2
, (3)

and soSi = +1 if i ∈ X andSi = −1 if i /∈ X. With these definitions the capacity of a cut
can be related to the energy of the configuration{Si } via

C(X) =
N∑

i=1

{
c(0, i )

1− Si

2
+ c(i, N + 1)

1+ Si

2

}
+ 4

∑
〈i, j 〉

1+ Si

2

1− Sj

2

=
∑
hi>0

2σhi
1− Si

2
+
∑
hi<0

−2σhi
1+ Si

2
+
∑
〈i, j 〉

1+
∑
〈i, j 〉
(Si − Sj )−

∑
〈i, j 〉

Sj Si

= −
∑
〈i, j 〉

Sj Si − σ
N∑

i=1

hi Si + z

2
N + σ

N∑
i=1

|hi |, (4)

wherez is the lattice coordination number. Note thatC(X) differs from the Hamiltonian
(1) by a constant value( z

2 N + σ∑N
i=1 |hi |) which is independent of the configuration{Si }.

Thus, the capacity of each cut{xi } is related to the energy of the corresponding configuration
{Si }. This reduces the problem of finding the configuration with minimimum energyH to
finding the cut of minimum capacityXmin of the corresponding network. There are several
efficient algorithms that solve the problem of finding the maximum flow and the minimum
cut of a network [10]. Hereafter, we will suppose that any of these algorithms may be used.

Our interest here is to find the first excited state. Thus, we should find the cut with capacity
nearest the minimumXnm. The algorithm presented in the next section is deterministic and
can be applied to any lattice of any spatial dimension, provided that no frustration appears.
It can also be extended to models with longer range interactions. The algorithm is related
to the so-called sensitivity analysis technique in the context of linear programming [8].

3. FINDING THE CUT WITH CAPACITY NEAREST THE MINIMUM

Let us consider a general networkN based on a di-graphG = [V, E] and capacity
functionc. Without losing generality we will assume that all the edges ofE have a capacity
larger than zero. We will denote the cut with minimum capacity (or min-cut) ofN asXmin.
There is an implicit association between any cutX ofN and the set of edges leavingX and
reachingX̄. This set of edges is denoted as (X, X̄). For any elementw of (X, X̄), it is said
thatw is an edge of the cutX and that the cutX containsw.
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Let us consider the set of all possible cuts of the networkN :SN . Any edgew of E divides
SN into two subsets: the set of cuts containingw(SNw ) and the set of cuts not containing
w(S̄Nw ).

Let w̄ be an edge ofXmin (min-cut ofN ). We define the networkN δ
w̄ based on the same

di-graphG, with capacity functioncδw̄ by augmenting the capacity of the edge ¯w by an
amountδ(>0) and keeping all the other capacities equal to those ofN . That is,

cδw̄(w̄) = c(w̄)+ δ
cδw̄(w) = c(w) ∀(E 3)w 6= w̄.

(5)

Now, we will focus on the problem of finding the min-cut ofN δ
w̄ that depends on the value

δ. Let us consider a general cutX of the networkN . Obviously,X is also a well-defined
cut ofN δ

w̄ and its capacity in this network satisfies

Cδ
w̄(X)− C(X) =

{
0 if w̄ /∈ (X, X̄)

δ = cδw̄(w̄)− c(w̄) if w̄ ∈ (X, X̄).
(6)

This means that when the capacity of the edge ¯w is increased the capacity of all the cuts
containingw̄ augments by the same amount while all the other cuts maintain their capacity.
In other words, all the cuts of set̄SNw̄ have the same capacity inN δ

w̄ as inN , while all the
cuts of setSNw̄ have a larger capacity inN δ

w̄ than inN . Moreover, all the cuts of setSNw̄
increase their capacity by the same amount (δ). This implies that whatever the value ofδ is,
Xmin is the cut of setSNw̄ with minimum capacity2 (both inN δ

w̄ and inN ). Let Xmin
w̄ be the

cut of setS̄Nw̄ with minimum capacity inN . Since the capacity of the cuts of this set does
not change withδ, Xmin

w̄ is also the cut with minimum capacity of set̄SNw̄ in N δ
w̄, whatever

the value ofδ. Thus, for any value ofδ, the two candidates to be the min-cut ofN δ
w̄ areXmin

andXmin
w̄ ; if δ is large enough,Cδ

w̄(X
min
w̄ ) will be lower thanCδ

w̄(X
min). Hence

min-cut ofN δ
w̄ =

{
Xmin if δ < C

(
Xmin
w̄

)− C(Xmin)

Xmin
w̄ if δ > C

(
Xmin
w̄

)− C(Xmin).
(7)

Obviously, the cut with capacity nearest the minimum (Xnm) must differ from the cut
with minimum capacity by, at least, one edge. Thus, there exists (at least) one edgew of
Xmin so thatXnm is in S̄Nw . Moreover,Xnm must coincide withXmin

w . This allows us, with
the help of any max-flow min-cut algorithm applied toN δ

w̄ for each edge ¯w of the network,
to reduce the number of candidates to beXnm to an affordable number. To findXnm it is
sufficient to minimizeC(Xmin

w̄ ) over all edges ¯w of Xmin:

C(Xnm) = min
w̄∈(Xmin,X̄min)

C
(
Xmin
w̄

)
(8)

Xnm= Xmin
w so that∀w̄ ∈ (Xmin, X̄min) C

(
Xmin
w

) ≤ C
(
Xmin
w̄

)
(9)

In fact, the equal sign in Eq. (9) only holds forw = w̄. A formal algorithm to find the
cut with capacity nearest the minimum can be written as

2 We have fixed ¯w ∈ (Xmin, X̄min), soXmin ∈ SNω̄ .
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ALGORITHM 1 (CUT WITH CAPACITY NEAREST THEMINIMUM OF N ).

1. begin
2. Cnm := C(Xmin)+ δ
3. for w̄ ∈ (Xmin, X̄min)

4. Xw̄ := min-cut(N δ
w̄)

5. if Cδ
w̄(Xw̄) < Cnm then

6. Cnm := Cδ
w̄(Xw̄)

7. Xnm := Xw̄
8. end if
9. end for

10. return Xnm

11. end,

wheremin-cut is a function that, acting over a network, returns its min-cut. The algorithm
starts by initializingCnm to a large enough value. This can be achieved by choosing a large
enoughδ to satisfy Eq. (7). Then, for eachN δ

w̄ (whenw̄ sweeps all the edges ofXmin), the
corresponding min-cut (Xw̄) is found and its capacity inN δ

w̄ compared withCnm. Conve-
niently,Cnm is updated toCδ

w̄(Xw̄) andXnm is temporarily identified withXw̄. At the end
of the algorithmXnm is the cut with capacity nearest the minimum andCnm its capacity.

4. PRELIMINARY RESULTS

To illustrate the kind of results that can be obtained and the efficiency of the algorithm
presented above, we have studied the FES of the 2d RFIM (1) on a square lattice with
periodic boundary conditions,N = 32× 32, and values ofσ ranging from 0.25 to 2.0.
For each value ofσ we have analyzed 104 different realizations of the random fields{hi }. For
each realization we have constructed a network following the mapping of Section 2. For
each network we found its min-cut and its cut with capacity nearest the minimum. Following
Eq. (3), we found the ground state{S0

i } and the FES{S1
i }.

To analyze the results we define the energy difference as

1H = H(S1
i

)−H(S0
i

)
(10)

and the overlap between the ground state and the FES as

q =
N∑

i=1

S1
i S0

i . (11)

Figure 1 shows the distribution of1H for different values ofσ . Each histogram is an
approximation to the probability densityp(1H) obtained by performing statistics over 104

different realizations of the random fields. As can be seen, for a certain value ofσ ' 1.0
an energy gap between the ground state and the FES appears for most of the realizations of
the random fields.

To investigate further the nature of these FES in Fig. 2 we show the diagram1H− q.
Each circle on these plots corresponds to the pair(q,1H) found for one set{hi }. For low
values of disorder there is a small fraction of FES with values of the overlap corresponding



FIG. 1. Probability densityp(1H) of the excess energy corresponding to the FES of the 2d RFIM for different
values ofσ . Results correspond to 104 realizations of anN = 32× 32 system.

FIG. 2. q–1H diagrams of a 2d RFIM withN = 32× 32. For each value ofσ, 104 realizations of the disorder
have been considered.
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FIG. 3. Ratio between the average timetFES needed to find the FES and the average timetGS needed to find
the ground state, for different values ofσ . Data correspond to the study of a 2d RFIM with sizeN = 32× 32.

to the flip of all the spins in the system (q = −1), while the rest of the FES corresponds
to the flip of a single spin (q = 1− 2/N). This change of behavior found aroundσ ' 1.0
could be related to the disorder-induced phase transition discussed in Ref. [5]. Nevertheless,
a clear answer can only be obtained after a finite-size scaling analysis of the results, which
will be presented elsewhere.

Finally, to illustrate the speed of the proposed algorithm Fig. 3 shows the ratio between
the average timetFES needed to find the FES and the average timetGS needed to find the
ground state, for different values ofσ . Note that the time needed for finding the FES is
much smaller than the time one would need by using the trivial method of forcing the
reversal of each individual spin of the system and finding the corresponding ground states.
Such an algorithm would represent a ratiotFES/tGS' N. It is known [11] that the time for
finding the max-flow ofN δ

w̄ once the max-flow ofN is determined behaves oft ∝ N. Thus,
tFES/tGS∼ O(1).

5. SUMMARY AND CONCLUSIONS

A deterministic and efficient algorithm for finding the first excited state of the random-
field Ising model has been presented. The algorithm is based on the analysis of the ground
state, which is found by means of any polynomial time minimization algorithm. The recur-
sive study of the edges of the minimum cut makes it possible to find the cut with capacity
nearest the minimum as has been proved in Section 3. If the min-cut algorithm used for the
determination of the ground state has a polynomial efficiencyt ∼ Nα(α ≥ z), the present
algorithm efficiency will also grow ast ∼ Nα. Moreover, it can be recursively used to find
the sequence of the first, second, third, etc., excited states.
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